题目内容
郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
考点:
一元一次不等式组的应用.
专题:
方案型.
分析:
(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.根据用124元恰好可以买到3个书包和2本词典,列方程求解;
(2)设购买书包y个,则购买词典(40﹣y)本.根据不等关系“余下不少于100元且不超过120元”列不等式组求解.
解答:
解:(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.
根据题意,得
3x+2(x﹣8)=124,
解得:x=28.
∴x﹣8=20.
答:每个书包的价格为28元,每本词典的价格为20元.(2)设购买书包y个,则购买词典(40﹣y)本.
根据题意得:
,
解得:10≤y≤12.5.
因为y取整数,所以y的值为10或11或12
所以有三种购买方案,分别是:
①购买书包10个,词典30本;
②购买书包11个,词典29本;
③购买书包12个,词典28本.
点评:
解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.
练习册系列答案
相关题目