题目内容

在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) 

考点:

勾股定理;坐标与图形性质.

专题:

分类讨论.

分析:

需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.

解答:

解:如图,①当点C位于y轴上时,设C(0,b).

+=6,解得,b=2或b=﹣2,

此时C(0,2),或C(0,﹣2).

如图,②当点C位于x轴上时,设C(a,0).

则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,

解得a=3或a=﹣3,

此时C(﹣3,0),或C(3,0).

综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).

故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).

点评:

本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网