题目内容
“五一”期间,某校由四位教师和若干名学生组成的旅游团,拟到国家4A级旅游风景区——闽西冠
山旅游,甲旅行社的收费标准是:如果买四张全票,则其余的人按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,团体票按八折优惠,这两家旅行社的全票价格均为300元.
(1)问学生人数是多少时,两家旅行社的收费相同?
(2)问学生人数在什么范围内时,选择甲旅行社所支付的旅游费要少?
(3)问学生人数在什么范围内时,选择乙旅行社所支付的旅游费要少?
答案:
解析:
提示:
解析:
|
答案:设此次旅游团中学生有x人,则甲旅行社的收费为:4×300+x·300×70%,乙旅行社的收费为:(x+4)×300×80%. (1)由题意可列方程为:4×300+210x=240(x+4). 解得x=8,即当学生人数为8人时,两家旅行社收费相同; (2)由题意可列不等式为:4×300+210x<240(x+4) 解得x>8,即当学生人数超过8人时,选择甲旅行社所支付的费用要少; (3)由题意可列不等式为:4×300+210x>240(x+4) 解得x<8,又由x≥1.故当1≤x<8时,选择乙旅行社所支付的旅游费要少. 剖析:首先根据题意,分别写出甲、乙旅行社的收费的代数式,然后,根据问法列等式或不等式来求解. |
提示:
|
拓展延伸: 本题是一道方案探索性问题.解决这类问题时,应先建立出收取费用与学生人数之间的关系式,然后比较两种不同情境下的收费高低,建立不等关系式予以求解即可,这种题型是近年来考试中出现得较多的一类不等式应用问题,应引起重视. |
练习册系列答案
相关题目