题目内容
下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为 .
下列运用等式性质正确的是( )
A. 如果,那么 B. 如果,那么
C. 如果,那么 D. 如果,那么
(1)计算: (-1)3+-; (2)化简:.
下列计算正确的是 ( )
A. x2+x3=x5 B. x2·x3=x6 C. x6÷x3=x3 D. (x3)2=x9
已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.
关于x的一元二次方程=0有一根为0,则m= .
如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=( ).
A.80° B.70° C.60° D.50°
已知图中的每个小正方格都是边长为1的小正方形,若△ABC与是位似图形,且顶点都在小正方形顶点上,则它们的位似中心的坐标是 .
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM的面积 ;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为点的四边形为平行四边形?若存,请求出Q点坐标;若不存在,请说明理由.