题目内容
如图,AB//CD,AD平分∠BAC,若∠ADC=70°,则∠ACD的度数为( )
A.35° B. 40° C.45° D.50°
如图,矩形ABCD中,点O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC.
求证:(1)四边形EBFD是菱形; (2)MB : OE=3:2 .
分解因式:m-9m= .
(8分)某中学为了预测本校应届毕业生“一分钟跳绳”项目的考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:
(1)本次抽取的女生总人数为 ,其中第四小组的人数为 ,第六小组人数占总人数的百分比为 ;
(2)请补全频数分布直方图:
(3)若“一分钟跳绳”不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数:
(4)若“一分钟跳绳”成绩不低于170次的为满分,不低于130次的为优秀,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?
不等式4+3x≥x-l的所有负整数解的和为 .
(6分)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,点D在AC上.
(1)若F是BD的中点,求证:CF=EF;
(2)将图1中的△AED绕点A顺时针旋转,使AE恰好在AC上(如图2).若F为BD上一点,且CF=EF,求证:BF= DF;
(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3).若F是BD的中点.探究CE与EF的数量关系,并证明你的结论.
(5分)如图,四边形ABCD中, AD//BC, ∠ABC=45 , ∠ADC=120 ,AD=DC,AB=,求BC的长.
如图,数轴上点A所表示的数为a,则a的值是
A.-1 B.-+1 C.+1 D.
如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若⊿BCE的面积为8,则k= 。