题目内容
如图,是某几何体的俯视图,该几何体可能是( ).
A.圆柱 B.圆锥 C.球 D.正方体
某校九年级(3)班的师生到距离10千米的山区植树,出发1.5小时后,张锦同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.如果张锦同学骑车的速度比队伍步行的速度的2倍还多2千米.求骑车与步行的速度各是多少?
如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB= cm时,BC与⊙A相切.
某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)求本次调查的学生人数;
(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;
(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.
分解因式: .
如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)
(1)填空:n的值为___________;
(2)求S关于x的函数关系式,并写出x的取值范围.
计算:
如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.
(1)求抛物线的解析式;
(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.
如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是( )
A.80° B.100° C.60° D.40°