题目内容
墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m,小明向墙壁走1m到B处发现影子刚好落在A点,则灯泡与地面的距离CD= m.(保留三位有效数字)
【答案】分析:利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.
解答:
解:如图:
根据题意得:BG=AF=AE=1.6m,AB=1m
∵BG∥AF∥CD
∴△EAF∽△ECD,△ABG∽△ACD
∴AE:EC=AF:CD,AB:AC=BG:CD
设BC=xm,CD=ym,则CE=(x+2.6)m,AC=(x+1)m
∴
,
解得:x=
,y=
∴CD=
≈4.27
灯泡与地面的距离约为4.27米.
点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离.
解答:
根据题意得:BG=AF=AE=1.6m,AB=1m
∵BG∥AF∥CD
∴△EAF∽△ECD,△ABG∽△ACD
∴AE:EC=AF:CD,AB:AC=BG:CD
设BC=xm,CD=ym,则CE=(x+2.6)m,AC=(x+1)m
∴
解得:x=
∴CD=
灯泡与地面的距离约为4.27米.
点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离.
练习册系列答案
相关题目