题目内容
【题目】直线y=
x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
![]()
A. (-3,0) B. (-6,0) C. (-
,0) D. (-
,0)
【答案】C
【解析】试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
![]()
直线y=
x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,2),点D(0,2).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,2),D′(0,﹣2),所以
,解得:
,即可得直线CD′的解析式为y=﹣
x﹣2.令y=﹣
x﹣2中y=0,则0=﹣
x﹣2,解得:x=﹣
,所以点P的坐标为(﹣
,0).故答案选C.
练习册系列答案
相关题目