题目内容
如图,抛物线y=
x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=
x2交于点C,连接AC,则图中阴影部分的面积为________.
分析:先求出抛物线m的解析式,得到顶点A的坐标,求出OA的长度,根据抛物线的对称性,可知阴影部分的面积=半圆的面积-△AOC的面积.
解答:
∴抛物线m的对称轴为直线x=3,
∵抛物线y=
∴设抛物线m的解析式为y=
将O(0,0)代入,得
解得k=4,
∴抛物线m的解析式为y=
由勾股定理,得OA=5.
连接OA、OC,由抛物线的对称性,可知C的坐标为(3,-4),
阴影部分的面积=半圆的面积-△AOC的面积=
故答案为:
点评:本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.
练习册系列答案
相关题目