题目内容

如图,抛物线y=数学公式x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=数学公式x2交于点C,连接AC,则图中阴影部分的面积为________.

-12
分析:先求出抛物线m的解析式,得到顶点A的坐标,求出OA的长度,根据抛物线的对称性,可知阴影部分的面积=半圆的面积-△AOC的面积.
解答:解:∵抛物线m经过点B(6,0)和O(0,0),
∴抛物线m的对称轴为直线x=3,
∵抛物线y=x2通过平移得到抛物线m,
∴设抛物线m的解析式为y=(x-3)2+k,
将O(0,0)代入,得(0-3)2+k=0,
解得k=4,
∴抛物线m的解析式为y=(x-3)2+4,顶点A的坐标为(3,4),
由勾股定理,得OA=5.
连接OA、OC,由抛物线的对称性,可知C的坐标为(3,-4),
阴影部分的面积=半圆的面积-△AOC的面积=•π•52-×8×3=-12.
故答案为:-12.
点评:本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网