题目内容
下面两个网格图均是4×4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑,使整个网格图满足下列要求.
设n是大于1909的正整数,使得为完全平方数的n的个数是 ______________.
如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转900,得到△DOC。抛物线y=ax2+bx+c经过点A、B、C。
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t。
①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F。求出当△CEF与△COD相似时点P的坐标;
②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由。
如图,在ABCD中,E,F分别是AD,CD边上的点,连接BE,AF,它们相交于点G,延长BE交CD的延长线于点H,则图中相似三角形共有( )
A.2对 B.3对 C.4对 D.5对
明月兔业养殖厂在兔舍外面开辟一个面积为20平方米的长方形活动场地,准备一边靠墙,其余三边利用长14米的旧围栏,已知墙长12米,问围成长方形的长与宽各是多少米?
如图所示,在⊙O中,点C是的中点,∠A=60,则∠BOC为_________度。
⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是 ( )
A.点P在⊙O内
B.点P在⊙O上
C.点P在⊙O外
D.点P在⊙O上或在⊙O外
对于任何的实数t,抛物线 y=x2 +(2-t) x + t总经过一个固定的点,这个点的坐标是 .
已知关于的一元二次方程有一个解为0,则的值为( )
A. B. C. D.