题目内容
【题目】如图,点O是直线AB上一点,∠AOC=40°,OD平分∠AOC,∠COE=70°.
![]()
(1)请你说明DO⊥OE;
(2)OE平分∠BOC吗?为什么?
【答案】(1)证明见解析(2)证明见解析
【解析】
试题(1)根据角平分线的定义求得∠COD=20°,再根据垂线的定义证明;
(2)求得∠BOC的度数,根据角平分线的定义即可求得OE平分∠BOC.
试题解析:(1)∵OD平分∠AOC,
∴∠DOC=
∠AOC=20.
∵∠COE=70°,
∴∠DOE=90°,
∴DO⊥OE.
(2)OE平分∠BOC.
理由:∵∠AOC+∠COE+∠BOE=180°,
又∵∠AOC=40°,∠COE=70°,
∴∠BOE=70°,
∴∠BOE=∠COE,
∴OE平分∠BOC.
练习册系列答案
相关题目