题目内容

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);

(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:

如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

解答:

解:(1)完成图形,如图所示:

证明:∵△ABD和△ACE都是等边三角形,

∴AD=AB,AC=AE,∠BAD=∠CAE=60°,

∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,

∵在△CAD和△EAB中,

∴△CAD≌△EAB(SAS),

∴BE=CD;

(2)BE=CD,理由同(1),

∵四边形ABFD和ACGE均为正方形,

∴AD=AB,AC=AE,∠BAD=∠CAE=90°,

∴∠CAD=∠EAB,

∵在△CAD和△EAB中,

∴△CAD≌△EAB(SAS),

∴BE=CD;

(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,

则AD=AB=100米,∠ABD=45°,

∴BD=100米,

连接CD,则由(2)可得BE=CD,

∵∠ABC=45°,∴∠DBC=90°,

在Rt△DBC中,BC=100米,BD=100米,

根据勾股定理得:CD==100米,

则BE=CD=100米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网