题目内容

精英家教网将一块直角三角形纸片ABC折叠,使点A与点C重合,展开后平铺在桌面上(如图所示).若∠C=90°,BC=8cm,则折痕DE的长度是
 
cm.
分析:根据图形翻折变换的性质可知DE是AC的垂直平分线,由于∠C是直角,故∠AED=90°,进而可得出DE是△ABC的中位线,由中位线定理即可得出结论.
解答:解:∵点A与点C重合,
∴DE是AC的垂直平分线,
∵∠C是直角,
∴∠AED=90°,
∴DE是△ABC的中位线,
∴DE=
1
2
BC=
1
2
×8=4cm.
故答案为:4.
点评:本题考查的是翻折变换及三角形中位线定理,熟知图形翻折变换的性质是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网