题目内容
分析:根据∠AMD′=36°和折叠的性质,得∠NMD=∠NMD′=72°;根据平行线的性质,得∠BNM=∠NMD=72°;根据折叠的性质,得∠D′=∠D=90°;根据四边形的内角和定理即可求得∠NFD′的值.
解答:解:∵∠AMD′=36°,
∴∠NMD=∠NMD′=72°.
∵AD∥BC,
∴∠BNM=∠NMD=72°.
又∵∠D′=∠D=90°,
∴∠NFD′=360°-72°×2-90°=126°.
故选B.
∴∠NMD=∠NMD′=72°.
∵AD∥BC,
∴∠BNM=∠NMD=72°.
又∵∠D′=∠D=90°,
∴∠NFD′=360°-72°×2-90°=126°.
故选B.
点评:此题综合运用了折叠的性质、平行线的性质、四边形的内角和定理.
练习册系列答案
相关题目