题目内容

已知
3
x+y
=
4
y+z
=
5
z+x
,则
x2+y2+z2
xy+yz+zx
=
 
分析:首先将已知
3
x+y
=
4
y+z
=
5
z+x
转化为
x+y
3
=
y+z
4
=
x+z
5
,并令
x+y
3
=
y+z
4
=
x+z
5
=a
,通过解方程组用a分别表示x、y、z的值.再代入原式计算.
解答:解:∵
3
x+y
=
4
y+z
=
5
z+x

3
x+y
=
4
y+z
3
x+y
=
5
z+x
4
y+z
=
5
z+x
?
y+z
4
=
x+y
3
x+z
5
=
x+y
3
x+z
5
=
y+z
4
?
x+y
3
=
y+z
4
=
x+z
5

∴令
x+y
3
=
y+z
4
=
x+z
5
=a

则有   
x+y=3a          ①
y+z=4a          ②
x+z=5a          ③
  
由①+②+③得   x+y+z=6a     ④
由④-①得   z=3a,
同理解得x=2a,y=a
x2+y2+z2
xy+yz+zx
=
(22+12+32)a2
(2×1+1×3+2×3)a2
=
14
11

故答案为
14
11
点评:本题考查分式的化简求值.首先将已知
3
x+y
=
4
y+z
=
5
z+x
转化为
x+y
3
=
y+z
4
=
x+z
5
,对于不确定的上述表达式,可令
x+y
3
=
y+z
4
=
x+z
5
=a
,进而不难用a分别表示x、y、z的值,这是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网