题目内容
某项工作,甲单独做需20h完成,乙单独做需12h完成,现在先由甲单独做4h,剩下的部分由甲、乙合做完成.设甲、乙合做的时间为xh时,可得方程_____.
如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.
(1)求证:AF=DF.
(2)求阴影部分的面积(结果保留π和根号)
如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线.
《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A. 3步 B. 5步 C. 6步 D. 8步
如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.
(1)请写出与A,B两点距离相等的点M所对应的数 .
(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,x秒后两只电子蚂蚁在数轴上的C点相遇,请列方程求出x,并指出点C表示的数.
(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,y秒后两只电子蚂蚁在数轴上的D点相遇,请列方程求出y并指出点D表示的数.
深圳市出租车的收费标准是:起步价10元(行驶距离不超过2km,都需付10元车费),超过2km每增加1km,加收2.6元,小陈乘出租车到达目的地后共支付车费49元,那么小陈坐车可行驶的路程最远是(不考虑其他收费)( )
A. 15km B. 16km C. 17km D. 18km
下列式子中,符合代数式书写格式的有( )
①m×n;②3ab;③;④m+2天;⑤abc3
A. 2个 B. 3个 C. 4个 D. 5个
在数轴上,点M表示的数为-2,将它先向右平移4.5个单位,再向左平移5个单位到达N点,则点N表示的数是________.
四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
如图,求证:矩形是正方形;
若,,求的长度;
当线段与正方形的某条边的夹角是时,直接写出的度数.