题目内容
如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是( )
![]()
A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定
A
【解析】
试题分析:延长BA至E点,使得AE=AC,连结ED.EP,可证得△APC≌△APE (SAS),
∴PC=PE=n,△BPE中,PB+PE>AB+AE=AB+AC,即m+n>b+c.
考点:三角形三边关系
考点分析: 考点1:三角形 (1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.
相邻两边的公共端点叫做三角形的顶点.
相邻两边组成的角叫做三角形的内角,简称三角形的角.
(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).
(3)三角形的主要线段:角平分线、中线、高.
(4)三角形具有稳定性. 试题属性
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目