题目内容
| AF |
| AD |
| A、①②③ | B、①②④ |
| C、②③④ | D、①②③④ |
分析:①连接FC,BD,先证∠BDE=∠BED,进而证得∠CFE=∠CEF,所以可得FC=CE.
②连接AC,由于∠ABE+∠BED=90°,∠A+∠ACH=90°,根据①的结论,∠A=∠DEB,所以∠B=∠ACH,所以它们所对的弧相等.
③由②知,不正确.
④由②可以证得△ECF∽△BED.
②连接AC,由于∠ABE+∠BED=90°,∠A+∠ACH=90°,根据①的结论,∠A=∠DEB,所以∠B=∠ACH,所以它们所对的弧相等.
③由②知,不正确.
④由②可以证得△ECF∽△BED.
解答:
解:连接FC,BD,AC,
∵D、E关于AB对称,
∴∠BDE=∠BED,
又∠CFE=∠BDE,
∴∠CFE=∠CEF,
∴△ECF∽△EBD.故④正确.
∴FC=CE.故①正确.
∠ABE+∠BED=90°,∠A+∠ACH=90°,
∵∠A=∠EDB,
∴∠ABF=∠ACD,
∴
=
.故②正确.
∵∠EBD≠90°,
∴∠B≠∠BEH.故③错误.
故选B.
∵D、E关于AB对称,
∴∠BDE=∠BED,
又∠CFE=∠BDE,
∴∠CFE=∠CEF,
∴△ECF∽△EBD.故④正确.
∴FC=CE.故①正确.
∠ABE+∠BED=90°,∠A+∠ACH=90°,
∵∠A=∠EDB,
∴∠ABF=∠ACD,
∴
| AF |
| AD |
∵∠EBD≠90°,
∴∠B≠∠BEH.故③错误.
故选B.
点评:此题综合运用了等角的余角相等,圆周角定理等.以及利用圆周角定理的结论证明相似等.
练习册系列答案
相关题目