题目内容
下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
如图,在RtΔABC中,∠C=90º,AC=4cm,BC=3cm.动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动。连接PM、PN。设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A、P、M为顶点的三角形与ΔABC相似?
(2)是否存在某一时刻t,使△PMN 的面积恰好是△ABC 面积的;若存在求t的值;若不存在,请说明理由.
将抛物线y=2x2向左平移1个单位,再向下平移2个单位,得到的抛物线是( )
A.y=2(x+1)2+2 B.y=2(x﹣1)2+2
C.y=2(x﹣1)2﹣2 D.y=2(x+1)2﹣2
阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
小敏的作法如下:
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是 ;由此可证明直线PA,PB都是⊙O的切线,其依据是 .
如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为( )
A.30° B.45° C.50° D.70°
已知:抛物线y=x2+(b﹣1)x﹣5.
(1)写出抛物线的开口方向和它与y轴交点的坐标;
(2)若抛物线的对称轴为直线x=1,求b的值,并画出抛物线的草图(不必列表);
(3)如图,若b>3,过抛物线上一点P(﹣1,c)作直线PA⊥y轴,垂足为A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数解析式.
已知抛物线y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为( )
A.50° B.80° C.90° D.120°
有2012个数排成一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则这2012个数的和等于 ( )
A.-1 B. 0 C. 2 D. 2010