题目内容
【题目】如图,将一块等腰直角三角板
放置在平面直角坐标系中,
,
,点
在
轴的正半轴上,点
在
轴的负半轴上,点
在第二象限,
所在直线的函数表达式是
,若保持
的长不变,当点
在
轴的正半轴滑动,点
随之在
轴的负半轴上滑动,则在滑动过程中,点
与原点
的最大距离是__________.
![]()
【答案】![]()
【解析】
首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
当x=0时,y=2x+4=4,则A(0,4);
当y=0时,x=-2, 则C(-2,0).
∴OA=4,OC=2,
AC=![]()
如图所示:
![]()
取AC的中点E,连接BE,OE,OB,
∴∠AOC=90°,AC=
,
OE=CE=AC=![]()
∴BC⊥AC,BC=
,
∴BE=
,
若点O,E,B不在一条直线上,则
OB<OE+BE=5+![]()
若点O,E、B在一条直线上,则
OB=OE+BE=5+
,
当O,E,B三点在一条直线上时,OB取得
最大值,最大值为5+
,
故答案为:
.
练习册系列答案
相关题目