题目内容
用配方法解;
用因式分解法解.
(题文)(问题引领)
问题1:在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结CG,先证明
△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是________________.
(探究思考)
问题2:若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,
∠ECF= ∠BCD, 问题1的结论是否仍然成立?请说明理由.
(拓展延伸)
问题3:在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.
将抛物线C1:y=﹣x2+沿x轴翻折,得到抛物线C2,如图所示
(1)请直接写出抛物线C2的解析式
(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.
①当B、D是线段AE的三等分点时,求m的值;
②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由
不等式组的最小整数解是( )
A. ﹣3 B. ﹣2 C. 0 D. 1
四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
如图,求证:矩形是正方形;
若,,求的长度;
当线段与正方形的某条边的夹角是时,直接写出的度数.
如图,在四边形中,,,如果,则四边形的面积为________.
一元二次方程的解是( )
A. B. , C. D. ,
计算:________.
某商场有、两种商品,商品每件售价元,商品每件售价元,商品每件的成本是元.
根据市场调查“若按上述售价销售,该商场每天可以销售商品件,若销售单价毎上涨元,商品每天的销售量就减少件.
请写出商品每天的销售利润(元)与销售单价元之间的函数关系?
当销售单价为多少元时,商品每天的销售利润最大,最大利润是多少?