题目内容
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=A.
B.
C.
D.
【答案】分析:在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sinB.
解答:解:在直角△ABC中,根据勾股定理可得:AB=
=
=3.
∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,
∴∠B=∠ACD.
∴sin∠ACD=sin∠B=
=
,
故选A.
点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.
解答:解:在直角△ABC中,根据勾股定理可得:AB=
∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,
∴∠B=∠ACD.
∴sin∠ACD=sin∠B=
故选A.
点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.
练习册系列答案
相关题目