题目内容
在频数分布直方图中
A. 横轴必须从0开始,纵轴不受这个限制
B. 纵轴必须从0开始,横轴不受这个限制
C. 横轴与纵轴都必须从0开始
D. 横轴与纵轴都不必从0开始
河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( )
A.12米 B.4米 C.5米 D.6米
如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=__________.
判断下列命题的真假,是假命题的举出反例.
①两个锐角的和是钝角;
②一个角的补角大于这个角;
③不相等的角不是对顶角.
为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.
根据以上信息,解答下列问题:
(1)请补全频数分布直方图;
(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?
(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?
小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是
A. 全班总人数为45人
B. 体重在50千克千克的人数最多
C. 学生体重的众数是14
D. 体重在60千克千克的人数占全班总人数的
(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式: ①求:22m+3n的值,
②求:24m﹣6n的值;
(2)已知2×8x×16=223,求x的值.
雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.
(1)本次被调查的市民共有多少人?
(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是____.(填“众数”“方差”“中位数”或“平均数”)