题目内容
(1)计算:(| 3 |
| 16 |
| 3 | -8 |
(2)分解因式:a2-4(a-b)2.
(3)计算:1-
| x-y |
| x+2y |
| x2-y2 |
| x2+4xy+4y2 |
(4)化简求值:(3x+2)(3x-2)-5x(x+1)-(2x-1)2,其中x=-
| 1 |
| 3 |
(5)解方程:
| 6 |
| x-1 |
| 3 |
| x |
| x+5 |
| x2-x |
分析:(1)先化简,再合并即可;
(2)运用平方差公式分解因式;
(3)这是个分式除法与减法混合运算题,运算顺序是先做除法,要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分,做减法时,要确定最简公分母进行通分;
(4)先把分式化简,再将未知数的值代入求解;
(5)观察可得最简公分母是x(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.
(2)运用平方差公式分解因式;
(3)这是个分式除法与减法混合运算题,运算顺序是先做除法,要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分,做减法时,要确定最简公分母进行通分;
(4)先把分式化简,再将未知数的值代入求解;
(5)观察可得最简公分母是x(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.
解答:解:(1)(
)2-
+
,
=3-4-2,
=-3;
(2)a2-4(a-b)2,
=(a+2a-2b)(a-2a+2b),
=(3a-2b)(-a+2b);
(3)1-
÷
,
=1-
•
,
=1-
,
=-
;
(4)(3x+2)(3x-2)-5x(x+1)-(2x-1)2,
=9x2-4-5x2-5x-4x2+4x-1,
=-x-5.
当x=-
时,原式=-x-5=
-5=-4
.
(5)方程两边同乘以x(x-1),得
6x+3(x-1)=x+5,
解得x=1,
将x=1代入x(x-1)=0,所以原方程无解.
| 3 |
| 16 |
| 3 | -8 |
=3-4-2,
=-3;
(2)a2-4(a-b)2,
=(a+2a-2b)(a-2a+2b),
=(3a-2b)(-a+2b);
(3)1-
| x-y |
| x+2y |
| x2-y2 |
| x2+4xy+4y2 |
=1-
| x-y |
| x+2y |
| (x+2y)2 |
| (x+y)(x-y) |
=1-
| x+2y |
| x+y |
=-
| 1 |
| x+y |
(4)(3x+2)(3x-2)-5x(x+1)-(2x-1)2,
=9x2-4-5x2-5x-4x2+4x-1,
=-x-5.
当x=-
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(5)方程两边同乘以x(x-1),得
6x+3(x-1)=x+5,
解得x=1,
将x=1代入x(x-1)=0,所以原方程无解.
点评:本题考查了解分式方程.解分式方程首先在方程两边乘以最简公分母,化为整式方程再求解,注意一定要检验.
练习册系列答案
相关题目