题目内容

作业宝如图,△ABC三内角平分线交于点D,过点D引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE.

证明:∵AO平分∠BAC,DE⊥AO,
∴∠DAO=∠EAO.
在△ADO和△AEO中,

∴△ADO≌△AEO(ASA),
∴∠ADO=∠AEO,
∴∠BDO=∠OEC=90°+∠BAC,
∴∠BOC=90°+∠BAC,
∴∠BDO=∠OEC=∠BOC,
∵O是△ABC的内角平分线的交点,
∴∠1=∠2,
∴△DBO∽△OBC,
同理可得出:△BOC∽△OEC,
∴△DBO∽△EOC,
∴△BOD∽△BCO∽△OCE.
分析:首先证明△ADO≌△AEO(ASA),进而得出∠BDO=∠OEC=∠BOC,即可得出△DBO∽△OBC,再求出△BOC∽△OEC,△DBO∽△EOC,即可得出答案.
点评:此题主要考查了相似三角形的判定与性质和全等三角形判定与性质,根据已知得出∠BDO=∠OEC=∠BOC是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网