题目内容
若x<2,则|x-2|+|2+x|=________.
4或-2x
分析:已知x<2,可得x-2<0,先分类讨论,然后根据绝对值的性质进行求解.
解答:∵x<2,
∴x-2<0,
①若-2≤x<2,
∴|x-2|+|2+x|=-(x-2)+2+x=4;
②x<-2,
∴x+2<0,
∴|x-2|+|2+x|=2-x-2-x=-2x.
故答案为:4或-2x.
点评:此题主要考查绝对值的性质,当x>0时,|x|=x;当x≤0时,|x|=-x,解题的关键是如何根据已知条件,去掉绝对值,还考查了分类讨论的思想,是一道好题.
分析:已知x<2,可得x-2<0,先分类讨论,然后根据绝对值的性质进行求解.
解答:∵x<2,
∴x-2<0,
①若-2≤x<2,
∴|x-2|+|2+x|=-(x-2)+2+x=4;
②x<-2,
∴x+2<0,
∴|x-2|+|2+x|=2-x-2-x=-2x.
故答案为:4或-2x.
点评:此题主要考查绝对值的性质,当x>0时,|x|=x;当x≤0时,|x|=-x,解题的关键是如何根据已知条件,去掉绝对值,还考查了分类讨论的思想,是一道好题.
练习册系列答案
相关题目
若a为正数,则有( )
A、a>
| ||
B、a=
| ||
C、a<
| ||
D、a与
|
下列说法正确的是( )
| A、若y<2x,则y是x的函数 | B、正方形面积是周长的函数 | C、变量x,y满足y2=2x,y是x的函数 | D、温度是变量 |