题目内容

已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过( )
A.一,二,三象限
B.一,二,四象限
C.一,三,四象限
D.一,二,三,四象限
【答案】分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=->0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.
解答:解:∵a>0,
∴开口方向向上,
∵b<0,a>0,
∴对称轴x=->0,
∵c=0,
∴此函数过原点.
∴它的图象经过一,二,四象限.
故选B.
点评:此题主要考查二次函数的以下性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网