题目内容
若一个正n边形的每个内角都等于120°,则n=______.
解法一:设所求正n边形边数为n,
则120°n=(n-2)•180°,
解得n=6;
解法二:设所求正n边形边数为n,
∵正n边形的每个内角都等于120°,
∴正n边形的每个外角都等于180°-120°=60°.
又因为多边形的外角和为360°,
即60°•n=360°,
∴n=6.
则120°n=(n-2)•180°,
解得n=6;
解法二:设所求正n边形边数为n,
∵正n边形的每个内角都等于120°,
∴正n边形的每个外角都等于180°-120°=60°.
又因为多边形的外角和为360°,
即60°•n=360°,
∴n=6.
练习册系列答案
相关题目