题目内容
如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当
时,问m为何值时
?
(3)是否存在m,使
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

令x=1,则y=4,
∴点P的坐标为(1,4);
(2)如图2,∵PH⊥x轴,∴PH∥OC,
∴△PAH∽△CAO,∴
∵
令y=0,则-x2+2mx=0,
∴x1=0,x2=2m,
∴点A的坐标(2m,0),
∴2m=
(3)①当0<m<
∴y=2x-
令x=1,则y=
∴点P的坐标为(1,
②如图3,当
∵PH⊥x轴,∴PH∥OC,
∴△APH∽△ACO,∴
∵
∵OH=1,∴OA=
∴y=2x-
令x=1,则y=
∴点P的坐标为(1,
③如图4,当m≥1时,
∵PH⊥x轴,∴PH∥OC,
∴△APH∽△ACO,∴
∵
∵OH=1,∴OA=
∴2m=
④如图5,当m≤0时,
∵PH⊥x轴,∴PH∥OC,
∴△APH∽△ACO,∴
∵
又∵CP<AP,
∴m的值不存在.
分析:(1)先将m=-1代入y=2x-2m,得到y=2x+2,再令x=1,求出y=4,即可求出点P的坐标;
(2)先由PH∥OC,得出△PAH∽△CAO,根据相似三角形对应边成比例得到
(3)分四种情况讨论:①当0<m<
②当
③当m≥1时,同②,求出m=
④当m≤0时,先由PH∥OC,得出△APH∽△ACO,根据相似三角形对应边成比例得到
点评:本题是二次函数的综合题型,其中涉及到的知识点有函数图象上点的坐标特征,二次函数与一元二次方程的关系,相似三角形的判定与性质,难度适中.第(3)小问中运用分类讨论思想将m的取值划分范围并且画出相应图形,从而利用数形结合及方程思想解决问题是本小题的关键.
练习册系列答案
相关题目