题目内容
【题目】已知如图,在长方形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则AB=________.
![]()
【答案】9
【解析】
连结GE,根据折叠的性质和矩形的性质可得△EFG与△EDG是直角三角形,DE=AE=FE,再根据HL即可证明△EFG≌△EDG.根据全等三角形的性质可得DG=FG=16,可设AB=BF=DC=x,求出x即可.
连结GE.
∵E是边AD的中点,
∴DE=AE=FE,
又∵四边形ABCD是矩形,
∴∠D=∠A=∠BFE=90°,
∴∠D=∠EFG=90°
在Rt△EFG与Rt△EDG中,
EF=ED,EG=EG,
∴Rt△EFG≌Rt△EDG(HL);
∴DG=FG=16,
设DC=x,则CG=16x,BG=x+16
在Rt△BCG中,
BG2=BC2+CG2,
即(x+16)2=(16x)2+242,
解得x=9,∴AB=9.
故答案为9.
练习册系列答案
相关题目