题目内容

如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,作BD⊥AC于点D,OM⊥AB于点M.sin∠CBD=数学公式.则OM=________.


分析:连接AO并延长,交圆O于点N,连接BN,则OM是△ABN的中位线,根据圆周角定理即可证明∠NAB=∠CBD,即可求得NB的长,根据三角形中位线定理即可求解.
解答:解:连接AO并延长,交圆O于点N,连接BN.
∵AN是直径,
∴∠ABN=90°,
∴∠ABN=∠CDB,
又∵∠C=∠N,
∴∠NAB=∠CBD,
∴sin∠NAB==sin∠CBD=
∴NB=AN•sin∠CBD=
∵OM⊥AB,
∴AM=BM,
又∵OA=ON,
∴OM是△ABN的中位线.
∴OM=NB=
故答案为:
点评:本题主要考查了三角形中位线定理,正确作出辅助线,利用等弧所对的圆周角相等把sin∠CBD=进行转化是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网