题目内容

【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?

时间x(天)

1≤x<9

9≤x<15

x≥15

售价(元/斤)

第1次降价后的价格

第2次降价后的价格

销量(斤)

80﹣3x

120﹣x

储存和损耗费用(元)

40+3x

3x2﹣64x+400


(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

【答案】
(1)解:设该种水果每次降价的百分率是x,

10(1﹣x)2=8.1,

x=10%或x=190%(舍去),

答:该种水果每次降价的百分率是10%


(2)解:当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,

∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,

∵﹣17.7<0,

∴y随x的增大而减小,

∴当x=1时,y有最大值,

y=﹣17.7×1+352=334.3(元),

当9≤x<15时,第2次降价后的价格:8.1元,

∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,

∵﹣3<0,

∴当9≤x≤10时,y随x的增大而增大,

当10<x<15时,y随x的增大而减小,

∴当x=10时,y有最大值,

y=380(元),

综上所述,y与x(1≤x<15)之间的函数关系式为:y=

第10天时销售利润最大


(3)解:设第15天在第14天的价格基础上最多可降a元,

由题意得:380﹣127.5≤(4﹣a)(120﹣15)﹣(3×152﹣64×15+400),

252.5≤105(4﹣a)﹣115,

a≤0.5,

答:第15天在第14天的价格基础上最多可降0.5元


【解析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价﹣进价)×销量﹣费用列函数关系式,并根据增减性求最大值,作对比;(3)设第15天在第14天的价格基础上最多可降a元,根据第15天的利润比(2)中最大利润最多少127.5元,列不等式可得结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网