题目内容

某书店参加某校读书活动,并为每班准备了A,B两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获得A名著,你认为此规则合理吗?为什么?

考点:

游戏公平性;列表法与树状图法.

分析:

首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为奇数与偶数情况,再利用概率公式即可求得答案.

解答:

解:画树状图得:

∵共有6种等可能的结果,两数之和是偶数的有2种情况;

∴甲获胜的概率为:=

∴P(甲获胜)=

∴P(甲)≠P(乙),

∴这个游戏规则对甲、乙双方不公平.

点评:

本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网