题目内容
如图,正方形ABCD的边长为8,E是边AB上的一点,AE=6,EF⊥DE交BC于点F.
(1)求DE的长;
(2)求EF的长.
解:(1)∵四边形ABCD是正方形,
∴∠A=90°,
∴在Rt△DAE中:DE=
=
=10;
(2)∵DE⊥EF,
∴∠DEA+∠BEF=90°,
又∵∠DEA+∠ADE=90°,
∴∠ADE=∠BEF,
在正方形ABCD中,∠A=∠B=90°,
∴△ADE∽△BEF,
∴
,
即
,
∴EF=
.
分析:(1)由正方形的性质与勾股定理,在Rt△DAE中即可求得DE的长;
(2)由同角的余角相等,易得∠ADE=∠BEF,即可证得:△ADE∽△BEF,由相似三角形的对应边成比例即可求得EF的长.
点评:此题考查了正方形的性质,相似三角形的判定与性质以及勾股定理的应用.题目难度不大,解题时要注意数形结合思想的应用.
∴∠A=90°,
∴在Rt△DAE中:DE=
(2)∵DE⊥EF,
∴∠DEA+∠BEF=90°,
又∵∠DEA+∠ADE=90°,
∴∠ADE=∠BEF,
在正方形ABCD中,∠A=∠B=90°,
∴△ADE∽△BEF,
∴
即
∴EF=
分析:(1)由正方形的性质与勾股定理,在Rt△DAE中即可求得DE的长;
(2)由同角的余角相等,易得∠ADE=∠BEF,即可证得:△ADE∽△BEF,由相似三角形的对应边成比例即可求得EF的长.
点评:此题考查了正方形的性质,相似三角形的判定与性质以及勾股定理的应用.题目难度不大,解题时要注意数形结合思想的应用.
练习册系列答案
相关题目