题目内容
函数y=的自变量x的取值范围是( )
A. x≥-1 B. x≥-1且x≠2 C. x≠±2 D. x>-1且x≠2
(1)如果=0,求[(x2+y2)+2y(x-y)-(x-y)(x+3y)]÷4y的值.
(2)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-.
如图,点M(-3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是( )
A. (, ) B. (,11) C. (2,2) D. (, )
山东省阳信县实验中学九年级(3)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是 ______ 度.
如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A. 1 B. 2 C. 3 D. 4
如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?
并说明理由.
如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A. ∠3=∠4 B. ∠D=∠DCE C. ∠1=∠2 D. ∠D+∠ACD=180°