题目内容
求证:(1)△ABE≌△DAF;(2)BE=EF+DF.
分析:根据∠DAF=∠ABE,∠FDA=∠EAB,AD=AB可以求证△ABE≌△DAF,得AE=DF,BE=AF,∵AF=AE+EF,∴BE=DF+EF.
解答:证明:(1)在△ABE和△DAF中,
∠FDA+∠DAF=90°,∠BAE+∠EBA=90°,∠DAF+∠EAB=90°,
∴∠DAF=∠ABE,∠FDA=∠EAB,
又∵AD=AB,
∴△ABE≌△DAF(ASA);
(2)∵△ABE≌△DAF,
∴AE=DF,BE=AF,
∵AF=AE+EF,
∴BE=DF+EF.
∠FDA+∠DAF=90°,∠BAE+∠EBA=90°,∠DAF+∠EAB=90°,
∴∠DAF=∠ABE,∠FDA=∠EAB,
又∵AD=AB,
∴△ABE≌△DAF(ASA);
(2)∵△ABE≌△DAF,
∴AE=DF,BE=AF,
∵AF=AE+EF,
∴BE=DF+EF.
点评:本题考查了正方形各边长相等、各内角为直角的性质,全等三角形的判定即全等三角形对应边相等的性质,本题中求证△ABE≌△DAF是解题的关键.
练习册系列答案
相关题目