题目内容

已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线任意一点,过PPHx轴,垂足是H,求证:PD = PH
(3)设过原点O的直线l与抛物线在第一象限相交于AB两点,若DA=2DB,且SABD = 4,求a的值.

 

解:(1)设抛物线的解析式为y=kx2+a                     (1分)
∵点D(2a,2a)在抛物线上,
4a2k+a = 2a    ∴k =                         (3分)
∴抛物线的解析式为y= x2+a                 (4分)
(2)设抛物线上一点Pxy),过PPHx轴,PGy轴,在Rt△GDP中,
由勾股定理得:PD2=DG2+PG2=(y–2a)2+x2 =y2 – 4ay+4a2+x2    
                                                           (5分) 
y= x2+a ∴x2 = 4a´ (ya)= 4ay– 4a2     (6分)
PD 2= y2– 4ay+4a2 +4ay– 4a2= y2 =PH2
PD = PH 
(3)过BBE x轴,AFx轴.
由(2)的结论:BE=DB AF=DA
DA=2DB ∴AF=2BE ∴AO = 2BO
BOA的中点,
COD的中点,
连结BC
BC= = = BE = DB                 (9分)
BBRy轴,
BRCD  ∴CR=DROR= a + = ,
B点的纵坐标是,又点B在抛物线上,
∴ = x2+a  ∴x2 =2a2
x>0     ∴x = a
B (a, )                          (10分)
AO = 2OB,∴SABD=SOBD = 4
所以,´2a´a= 4
a2=" 4  " ∵a>0 ∴a =" 2              " (12分)

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网