题目内容

如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.

求证:DB=DC.

证明见解析. 【解析】试题分析:先根据圆周角定理得出∠DAC=∠DBC,再由角平分线的性质得出∠EAD=∠DAC,根据圆内接四边形的性质得出∠EAD=∠BCD,由此可得出结论. 试题解析:∵∠DAC与∠DBC是同弧所对的圆周角, ∴∠DAC=∠DBC. ∵AD平分∠CAE, ∴∠EAD=∠DAC, ∴∠EAD=∠DBC. ∵四边形ABCD内接于⊙O, ∴∠EAD=∠BCD, ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网