题目内容
如图
ABCD中, ∠C=90度,沿着直线BD折叠,使点C落在
处,
交AD于E,
,
,求DE的长.![]()
∵Rt△DC′B由Rt△DBC翻折而成,
∴CD=C′D=AB=8,∠C=∠C′=90°,
设DE=x,则AE=16-x,
∵∠A=∠C′=90°,∠AEB=∠DEC′,
∴∠ABE=∠C′DE,
在Rt△ABE与Rt△C′DE中,
∠A=∠C′=90°
AB=C′D,
∠ABE=∠C′DE,
∴Rt△ABE≌Rt△C′DE,
∴BE=DE=x,
在Rt△ABE中,
AB2+AE2=BE2,即82+(16-x)2=x2,解得x=10,即DE=10.
解析
练习册系列答案
相关题目