题目内容

如图ABCD中, ∠C=90度,沿着直线BD折叠,使点C落在处,交AD于E,,求DE的长.

∵Rt△DC′B由Rt△DBC翻折而成,
∴CD=C′D=AB=8,∠C=∠C′=90°,
设DE=x,则AE=16-x,
∵∠A=∠C′=90°,∠AEB=∠DEC′,
∴∠ABE=∠C′DE,
在Rt△ABE与Rt△C′DE中,
∠A=∠C′=90°
AB=C′D,
∠ABE=∠C′DE,
∴Rt△ABE≌Rt△C′DE,
∴BE=DE=x,
在Rt△ABE中,
AB2+AE2=BE2,即82+(16-x)2=x2,解得x=10,即DE=10.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网