题目内容
阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系:
,x1x2=
.
根据该材料解题:
关于x的方程
有两个不相等的实数根.
①求k的取值范围.
②是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
解:(1)∵△=(k+2)2-4k•
>0,
∴k>-1,
又∵k≠0,
∴k的取值范围是k>-1,且k≠0;
(2)不存在符合条件的实数k.理由如下:
设方程kx2+(k+2)x+
=0的两根分别为x1、x2,由根与系数关系有:x1+x2=
,x1•x2=
,
而
,
∴
=0,
∴k=-2,
由(1)知,k=-2时,△<0,原方程无实解,
∴不存在符合条件的k的值.
分析:(1)根据根的判别式得到k≠0,且△=(k+2)2-4k•
>0,然后求出它们的公共部分即可得到k的取值范围是k>-1,且k≠0;
(2)设方程kx2+(k+2)x+
=0的两根分别为x1、x2,由根与系数关系有:x1+x2=
,x1•x2=
,当
,得到k=-2,不满足(1)中的条件,所以不存在符合条件的k的值.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
,x1•x2=
.也考查了一元二次方程的根的判别式.
∴k>-1,
又∵k≠0,
∴k的取值范围是k>-1,且k≠0;
(2)不存在符合条件的实数k.理由如下:
设方程kx2+(k+2)x+
而
∴
∴k=-2,
由(1)知,k=-2时,△<0,原方程无实解,
∴不存在符合条件的k的值.
分析:(1)根据根的判别式得到k≠0,且△=(k+2)2-4k•
(2)设方程kx2+(k+2)x+
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
练习册系列答案
相关题目
(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
,x1•x2=
.
根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求
+
的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
| x | … | 0 | 1 | 2 | 3 | … |
| y | … | 5 | 2 | 1 | 2 | … |
(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
,x1•x2=
.
根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求
+
的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.
根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
| x | … | 1 | 2 | 3 | … | |
| y | … | 5 | 2 | 1 | 2 | … |