题目内容
24、(1)设1,2,3,…,9的任一排列为al,a2,a3…,a9.求证:(all一1)( a2-2)…(a9-9)是一个偶数.
(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.
(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.
分析:(1)转换角度考查问题,用反证法求证;
(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.
(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.
解答:解:(1)用反证法.
假设(a1-1)(a2-2)…(a9-9)为奇数,则a1-1,a2-2,…,a9-9都为奇数,
则a1,a3,a5,a7,a9为偶数,a2,a4,a6,a8为奇数,
而1-9是5个奇数、4个偶数,
奇偶数矛盾,因此假设不成立.
(2)∵11,22,33,44,54,…20022002,20032003,与1,2,3,4,5,…2002,2003的奇偶性相同,
∴在11,22,33,44,54,…20022002,20032003的任意数前加“+”或“-”的奇偶性 与在1,2,3,4,5,…2002,2003的任意数前加“+”或“-”的的奇偶性相同,
∵两个整数的和与差的奇偶性相同,且1+2+3+4+5+…+2003=2003×(2003+1)÷2=2003×1002是偶数,
∴这个代数式的和应为偶数,
即这个代数式的和必定不等于2003.
假设(a1-1)(a2-2)…(a9-9)为奇数,则a1-1,a2-2,…,a9-9都为奇数,
则a1,a3,a5,a7,a9为偶数,a2,a4,a6,a8为奇数,
而1-9是5个奇数、4个偶数,
奇偶数矛盾,因此假设不成立.
(2)∵11,22,33,44,54,…20022002,20032003,与1,2,3,4,5,…2002,2003的奇偶性相同,
∴在11,22,33,44,54,…20022002,20032003的任意数前加“+”或“-”的奇偶性 与在1,2,3,4,5,…2002,2003的任意数前加“+”或“-”的的奇偶性相同,
∵两个整数的和与差的奇偶性相同,且1+2+3+4+5+…+2003=2003×(2003+1)÷2=2003×1002是偶数,
∴这个代数式的和应为偶数,
即这个代数式的和必定不等于2003.
点评:此题考查整数的奇偶性,注意“两个整数的和与差的奇偶性相同”的应用.
练习册系列答案
相关题目
八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是( )
| A、7x+9-9(x-1)>0 | |||||
| B、7x+9-9(x-1)<8 | |||||
C、
| |||||
D、
|