题目内容
如图,已知△ABC的面积S△ABC=1.

在图(1)中,若
=
=
=
,则S △A1B1C1=
;
在图(2)中,若
=
=
=
,则S △A2B2C2=
;
在图(3)中,若
=
=
=
,则S △A3B3C3=
;
按此规律,若
=
=
=
,则S △A4B4C4=
;
若
=
=
=
,则S △A8B8C8=
.
在图(1)中,若
| AA1 |
| AB |
| BB1 |
| BC |
| CC1 |
| CA |
| 1 |
| 2 |
| 1 |
| 4 |
在图(2)中,若
| AA2 |
| AB |
| BB2 |
| BC |
| CC2 |
| CA |
| 1 |
| 3 |
| 1 |
| 3 |
在图(3)中,若
| AA3 |
| AB |
| BB3 |
| BC |
| CC3 |
| CA |
| 1 |
| 4 |
| 7 |
| 16 |
按此规律,若
| AA4 |
| AB |
| BB4 |
| BC |
| CC4 |
| CA |
| 1 |
| 5 |
| 13 |
| 25 |
| 13 |
| 25 |
若
| AA8 |
| AB |
| BB8 |
| BC |
| CC8 |
| CA |
| 1 |
| 9 |
| 57 |
| 81 |
| 57 |
| 81 |
分析:观察三个图形下得出三角形的面积,归纳总结得到一般性规律,即可求出第四个与第八个图形的面积.
解答:解:若
=
=
=
,则S△A1B1C1=1-3×
×
=
;
若
=
=
=
,则S△A2B2C2=1-3×
×
=
;
若
=
=
=
,则S△A3B3C3=1-3×
×
=
;
若
=
=
=
,则S△A4B4C4=1-3×
×
=
;
若
=
=
=
,则S△A8B8C8=1-3×
×
=
.
故答案为:
;
| AA1 |
| AB |
| BB1 |
| BC |
| CC1 |
| CA |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
若
| AA2 |
| AB |
| BB2 |
| BC |
| CC2 |
| CA |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
若
| AA3 |
| AB |
| BB3 |
| BC |
| CC3 |
| CA |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
| 7 |
| 16 |
若
| AA4 |
| AB |
| BB4 |
| BC |
| CC4 |
| CA |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 13 |
| 25 |
若
| AA8 |
| AB |
| BB8 |
| BC |
| CC8 |
| CA |
| 1 |
| 9 |
| 8 |
| 9 |
| 1 |
| 9 |
| 57 |
| 81 |
故答案为:
| 13 |
| 25 |
| 57 |
| 81 |
点评:此题考查了相似三角形的判定与性质,弄清题中的规律是解本题的关键.
练习册系列答案
相关题目