题目内容

如图,已知△ABC的面积S△ABC=1.

在图(1)中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,则S A1B1C1=
1
4

在图(2)中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,则S A2B2C2=
1
3

在图(3)中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,则S A3B3C3=
7
16

按此规律,若
AA4
AB
=
BB4
BC
=
CC4
CA
=
1
5
,则S A4B4C4=
13
25
13
25

AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,则S A8B8C8=
57
81
57
81
分析:观察三个图形下得出三角形的面积,归纳总结得到一般性规律,即可求出第四个与第八个图形的面积.
解答:解:若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,则S△A1B1C1=1-3×
1
2
×
1
2
=
1
4

AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,则S△A2B2C2=1-3×
2
3
×
1
3
=
1
3

AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,则S△A3B3C3=1-3×
3
4
×
1
4
=
7
16

AA4
AB
=
BB4
BC
=
CC4
CA
=
1
5
,则S△A4B4C4=1-3×
4
5
×
1
5
=
13
25

AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,则S△A8B8C8=1-3×
8
9
×
1
9
=
57
81

故答案为:
13
25
57
81
点评:此题考查了相似三角形的判定与性质,弄清题中的规律是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网