题目内容
如图,在?ABCD中,AB=5,AD=10,cosB=
,过BC的中点E作EF⊥AB,垂足为点F,连接DF,求DF的长.
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,AD=BC,
∴∠B=∠ECH,∠BFE=∠H.
∵AB=5,AD=10,
∴BC=10,CD=5.
∵E是BC的中点,
∴BE=EC=
在△BFE和△CHE中,
∴△BFE≌△CHE(AAS),
∴CH=BF,EF=EH.
∵EF⊥AB,
∴∠BFE=∠H=90°.
在Rt△BFE中,
∵cosB=
∴BF=CH=3.
∴EF=
在Rt△FHD中,∠H=90°,
∴DF2=FH2+DH2=82+82=2×82.
∴DF=8
分析:首先延长DC,FE相交于点H,由四边形ABCD是平行四边形,E是BC的中点,易得△BFE≌△CHE,又由cosB=
点评:此题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.
练习册系列答案
相关题目