题目内容
一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( )
A.5:4 B.5:2 C.:2 D.:
下列运算正确的是( )
A.a3•a2=a6 B.3-1=-3 C.(-2a)3=-8a3 D.20160=0
如图,矩形OABC的顶点A、C的坐标分别为(0,10)、(4,0),反比例函数(k≠0)在第一象限内的图象过矩形OABC的对角线的交点M,并与AB、BC分别交于点E、F,连接OE、EF、OF,则△OEF的面积为 .
已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)求证:BD是⊙O的切线;
(2)当AB=10,BC=8时,求BD的长.
在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是 .
如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有( )
A.2个 B.3个 C.4个 D.5个
如图,在直角坐标系中,矩形OABC的顶点A、C均在坐标轴上,且OA=4,OC=3,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;动点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC于点P,连接MP.
(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);
(2)设△OMP的面积为S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,请说明理由.
某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体( )
A.3 B.4 C.5 D.6
如图,在平的直角坐标系中,直线y=-2x+2与x轴y轴分别相交于点A,B,四边形ABCD是正方形,曲线y=在第一象限经过点D.
(1)求双曲线表示的函数解析式;
(2)将正方形ABCD沿X轴向左平移 个单位长度时,点C的对应点恰好落在(1)中的双曲线上.