题目内容
某校学生参加体育测试,某小组10名同学的完成引体向上的个数如下表,
这10名同学引体向上个数的众数与中位数依次是( )
A.7和7.5 B.7和8 C.7.5和9 D.8和9
菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大
种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.
在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=( )
A.40° B.50° C.60° D.70°
如图,一次函数的图象与反比例函数(为常数,且)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.
请写出一个开口向上,并且与y轴交于点(0,-2)的抛物线的表达式__________ .
如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=35°,则∠B的度数为( )
A.25° B.35° C.55° D.65°
阅读下面的材料:
小敏在数学课外小组活动中遇到这样一个问题:
如果α,β都为锐角,且,,求的度数.
小敏是这样解决问题的:如图1,把,放在正方形网格中,使得,,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰直角三角形,因此可求得=∠ABC =
°.
请参考小敏思考问题的方法解决问题:
如果,都为锐角,当,时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=,由此可得=______°.
为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是( )
A.6,4 B.6,6 C.4,4 D.4,6
(10分)计算
(1) (5分)计算:+
(2) (5分)先化简,再求值:,其中a=,b=-