题目内容
⊙O的半径为5cm,点P是⊙O外一点,OP=8cm,⊙O和⊙P相切,求⊙P的半径.
【答案】分析:当⊙O和⊙P相外切时,由⊙P的半径=OP-⊙O的半径,可求得⊙P的半径;当⊙O和⊙P相内切时,由⊙P的半径=OP+⊙O的半径,可求得⊙P的半径.
解答:解:当⊙O和⊙P相外切时;
∵OP=8cm,⊙O的半径为5cm,
∴⊙P的半径=OP-⊙O的半径=3cm;
当⊙O和⊙P相内切时,
∵点P是⊙O外一点,
∴只可能⊙O内切于⊙P,
∴⊙P的半径=OP+⊙O的半径=13cm.
答:⊙P的半径3cm或13cm.
点评:本题考查了相切两圆的性质.
解答:解:当⊙O和⊙P相外切时;
∵OP=8cm,⊙O的半径为5cm,
∴⊙P的半径=OP-⊙O的半径=3cm;
当⊙O和⊙P相内切时,
∵点P是⊙O外一点,
∴只可能⊙O内切于⊙P,
∴⊙P的半径=OP+⊙O的半径=13cm.
答:⊙P的半径3cm或13cm.
点评:本题考查了相切两圆的性质.
练习册系列答案
相关题目