题目内容
| A、130° | B、120° | C、115° | D、105° |
分析:分别作弦DE、FG、HK的弦心距,由于DE=FG=HK,所以弦的弦心距也相等,所以OB、CO是角的平分线,可以求出∠MOQ度数,进一步求出∠BOC的度数.
解答:
解:如图,连接OB、OC,作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,
∴∠AMO=∠AQO=90°,
∵∠A=50°,
∴∠MOQ=130°,
∵DE=FG=HK,
∴OM=ON=OQ,
∴OB、OC平分∠ABC和∠ACB,
∴∠BOC=
×(360°-130°)=115°.
故选C.
∴∠AMO=∠AQO=90°,
∵∠A=50°,
∴∠MOQ=130°,
∵DE=FG=HK,
∴OM=ON=OQ,
∴OB、OC平分∠ABC和∠ACB,
∴∠BOC=
| 1 |
| 2 |
故选C.
点评:解决与弦有关的问题,一般要作弦的弦心距来解决问题.
练习册系列答案
相关题目