题目内容

如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,弦AB=8,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于


  1. A.
    0.6
  2. B.
    0.8
  3. C.
    0.5
  4. D.
    1.2
A
分析:连接OA、OB,由于OM⊥AB,根据垂径定理易证得∠BOM=∠AOB,而由圆周角定理可得∠BCD=∠AOB=∠BOM,因此∠CBD=∠OBM,只需求得∠OBM的正弦值即可;在Rt△OBM中,由垂径定理可得BM=4,已知⊙O的半径OB=5,由勾股定理可求得OM=3,即可求出∠OBM即∠CBD得正弦值,由此得解.
解答:解:连接OA、OB;
∵OM⊥AB,
∴AM=BM=4,∠AOM=∠BOM=∠AOB;
又∵∠BCD=∠AOB,
∴∠BOM=∠BCD,∠OBM=∠CBD;
在Rt△OBM中,OB=5,BM=4,由勾股定理得OM=3;
∴sin∠OBM==,sin∠CBD=sin∠OBM=
故选A.
点评:此题主要考查了垂径定理、圆周角定理、勾股定理的综合应用能力,能够根据已知条件找到∠CBD=∠OBM,是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网