题目内容
如图,在四边形ABCD中,AB∥DC,BE,CE分别平分∠ABC,∠BCD,且点E在AD上.求证:BC=AB+CD.
在△ABC中,∠C=90°,AC=1,AB=,则∠B的度数是( )
A. 30° B. 45° C. 60° D. 90°
运用等式性质进行的变形,不正确的是( )
A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+c
C.如果a=b,那么ac=bc D.如果ac=bc,那么a=b
一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )
A. 28个 B. 30个 C. 36个 D. 42个
一个硬币抛起后落地时“正面朝上”的概率有多大?
(1)写出你的猜测;
(2)一位同学在做这个试验时说:“我只做了10次试验就得到了正面朝上的概率约为30%.”你认为他说的对吗?为什么?
(3)还有一位同学在做这个试验中觉得用硬币麻烦,改用可乐瓶盖做这个试验,你认为他的做法科学吗?为什么?
如图,已知点B,E,F,C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED.
某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
下列方程中变形正确的是( )
①3x+6=0变形为x+2=0;
②2x+8=5-3x变形为x=3;
③+=4去分母,得3x+2x=24;
④(x+2)-2(x-1)=0去括号,得x+2-2x-2=0.
A. ①③ B. ①②③ C. ①④ D. ①③④
下列选项中,不是同类项的是( )
A. -1和0 B. -x2y和3yx2 C. -2xy2和2x2yz D. -m2和6m2