题目内容

(2010•赤峰)在?ABCD中,AC是一条对角线,∠B=∠CAD,延长BC至点E,使CE=BC,连接DE.
(1)求证:四边形ABED是等腰梯形;
(2)若AB=AD=4,求梯形ABED的面积.

【答案】分析:(1)要证ABED是等腰梯形,只需证AB=DE,通过△ABC≌△DCE可证.
(2)代入梯形面积公式,直接进行求解.
解答:(1)证明:∵在?ABCD中,AD∥BC,AB=CD,
∴∠CAD=∠ACB.
∵∠B=∠CAD,
∴∠ACB=∠B.
∴AB=AC.
∵AB∥CD,
∴∠B=∠DCE.
又∵BC=CE,
∴△ABC≌△DCE(SAS).
∴AC=DE=AB.
∵AD∥BE,
∴四边形ABED是等腰梯形.

(2)解:∵四边形ABCD为平行四边形,
∴AD=BC=CE=4.
∴△ABC为等边三角形.
∴△ABC的高=AB×sin60°=4×=2
∴梯形高=三角形高=2
∴S=(4+8)×2×=12
点评:命题意图:①检验学生对等腰梯形判定方法的掌握情况,②对梯形面积公式的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网